On multipliers for Fourier series in Sobolev orthogonal polynomials
نویسندگان
چکیده
منابع مشابه
Fourier Series of Orthogonal Polynomials
It follows from Bateman [4] page 213 after setting = 1 2 . It can also be found with slight modi cation in Bateman [5] page122. However we are not aware of any reference where explicit formulas for the Fourier coef cients for Gegenbauer, Jacobi, Laguerre and Hermite polynomials can be found. In this article we use known formulas for the connection coef cients relating an arbitrary orthogonal po...
متن کاملRelative asymptotics and Fourier series of orthogonal polynomials with a discrete Sobolev inner product
Let m be a finite positive Borel measure supported in 1⁄2 1; 1 and introduce the discrete Sobolev type inner product
متن کاملSobolev Orthogonal Polynomials on a Simplex
The Jacobi polynomials on the simplex are orthogonal polynomials with respect to the weight function Wγ(x) = x γ1 1 · · ·x γd d (1− |x|)d+1 when all γi > −1 and they are eigenfunctions of a second order partial differential operator Lγ . The singular cases that some, or all, γ1, . . . , γd+1 are −1 are studied in this paper. Firstly a complete basis of polynomials that are eigenfunctions of Lγ ...
متن کاملMultilinear Fourier Multipliers with Minimal Sobolev Regularity
Letm be a positive integer. In this talk, we will introduce optimal conditions,expressed in terms of Sobolev spaces, on m-linear Fourier multiplier operatorsto be bounded from a product of Lebesgue or Hardy spaces to Lebesgue spaces.Our results are sharp and cover the bilinear case (m = 2) obtained by Miyachiand Tomita [1]. References[1] Miyachi A., and Tomita N., Minima...
متن کاملEstimates for Jacobi-sobolev Type Orthogonal Polynomials
Let the Sobolev-type inner product 〈f, g〉 = ∫
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sbornik Mathematics
سال: 2022
ISSN: ['1064-5616', '1468-4802']
DOI: https://doi.org/10.4213/sm9556e